Homework 1

(Due date: January 21^{st} @ 5:30 pm) Presentation and clarity are very important!

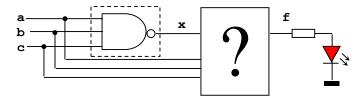
PROBLEM 1 (25 PTS)

a) Simplify the following functions using ONLY Boolean Algebra Theorems. For each resulting simplified function, sketch the logic circuit using AND, OR, XOR, and NOT gates. (12 pts)

$$\checkmark F = \overline{A(\overline{B} \oplus \overline{C}) + \overline{B}}$$

$$\checkmark F = (\overline{C} + \overline{B})(C + A)(\overline{B} + A) + CA$$

$$\checkmark F(X,Y,Z) = \prod (M_1, M_3, M_6, M_7)$$

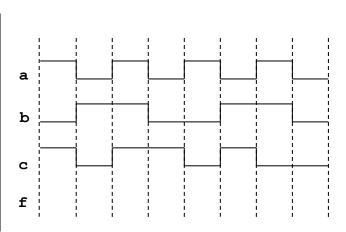

$$\checkmark F = (\overline{X} + \overline{Z})Y + X\overline{Y}Z$$

- b) Based on the formula $x \oplus y = x\bar{y} + \bar{x}y$, demonstrate that $(a \oplus b) \oplus c = a \oplus (b \oplus c) = b \oplus (a \oplus c)$. You can express each function using the canonical sum of products, or complete the truth table for each function. (5 pts)
- c) For the following Truth table with two outputs: (8 pts)
 - Provide the Boolean functions using the Canonical Sum of Products (SOP), and Product of Sums (POS).
 - Express the Boolean functions using the minterms and maxterms representations.
 - Sketch the logic circuits as Canonical Sum of Products and Product of Sums.

x	У	z	${ t f_1}$	\mathbf{f}_2
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	0

PROBLEM 2 (10 PTS)

Design a circuit (<u>simplify your circuit</u>) that verifies the logical operation of a 3-input NAND gate. f = '1' (LED ON) if the NAND gate does NOT work properly. Assumption: when the NAND gate is not working, it generates 1's instead of 0's and vice versa.

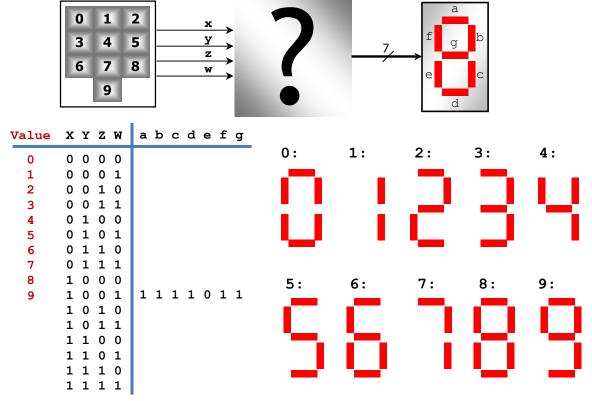


PROBLEM 3 (15 PTS)

- Complete the truth table for a circuit with 4 inputs x, y, z, w that activates an output (f = 1) when the number of 1's in the inputs is odd. For example: If $xyzw = 1100 \rightarrow f = 0$. If $xyzw = 1011 \rightarrow f = 1$.
- Provide the Boolean function using the minterm representation.
- Sketch the logic circuit using <u>ONLY</u> 2-input NAND gates. Tip: try to simplify the function using XOR gates.

PROBLEM 4 (20 PTS)

a) Complete the timing diagram of the logic circuit whose VHDL description is shown below: (5 pts)


b) The following is the timing diagram of a logic circuit with 3 inputs. Sketch the logic circuit that generates this waveform. Then, complete the VHDL code. (10 pts)

c) Complete the timing diagram of the following circuit: (5 pts)

PROBLEM 5 (30 PTS)

- A numeric keypad produces a 4-bit code as shown below. We want to design a logic circuit that converts each 4-bit code to
 a 7-segment code, where each segment is an LED: A LED is ON if it is given a logic '1'. A LED is OFF if it is given a logic '0'.
- \checkmark Complete the truth table for each output (a, b, c, d, e, f, g).
- ✓ Provide the simplified expression for each output (a, b, c, d, e, f, g). Use Karnaugh maps for a, b, c, d, e and the Quine-McCluskey algorithm for f, g. Note it is safe to assume that the codes 1010 to 1111 will not be produced by the keypad.

